Hash Length Extension Attack Lab Report

Hayden Eubanks
School of Business, Liberty University
CSIS 463-B01
Dr. De Queiroz

September 30, 2023

Hash Length Extension Lab Report
Introduction:

One of the applications of hashing algorithms in modern cryptography can be seen in the
verification of message integrity (Upadhyay et al., 2022). This message integrity is often applied
through message authentication codes (MAC) which can be appended to the end of a message
and compared through hashing against the received message hash (Al-Odat, Khan, & Al-
Qtiemat, 2022). If the hashed values are the same, a high degree of certainty can be placed on the
fact that the message has not been altered. However, some hashing algorithms based on the
Merkle Damgard (MD) framework such as MD4, MD5, SHA1, SHA2, and SHA256 have been
discovered to be vulnerable to length extension attacks due to the way they perform block
padding (Al-Odat, Khan, & Al-Qtiemat, 2022). This vulnerability is a serious concern for
security professionals as it allows a malicious actor to append information to the end of a
message without knowing the original message's contents and then produce the correct hash
value for the new message (Cortez, 2020). The consequences of a length extension attack could
then result in the receiver believing that they can verify that a message has not been altered when
in fact the message has been intercepted and data appended to it (Upadhyay et al., 2022).
Understanding the implications of this vulnerability then highlights the importance of the risk of
length extension attacks to be mitigated, and one implementation to accomplish this is the use of
hash-based message authentication codes (HMACSs) (Cortez, 2020). Exploring the dangers of
improper MAC usage and how they can be mitigated through HMACs can then allow a security
professional to understand the risks associated with length extension attacks as well as

implementations to mitigate these attacks in their work promoting message integrity.

To examine the dangers posed by extension attacks, an understanding of how they are
performed must first be obtained. Length extension attacks of hashing algorithms are a form of
man-in-the-middle attack where a malicious actor intercepts a message and its hashed value and
then appends data to the end of the message before rehashing to a new and verifiable hashed
value (Upadhyay et al., 2022). To accomplish a length extension attack, a malicious actor would
need access to the original hashed value, the length of the initial message, and the hashing
algorithm used (Cortez, 2020). Notably, this list does not include the secret key used for
encryption highlighting a vulnerability of extreme concern. Further, the fact that this risk exists
in several notable hashing algorithms denotes a lack of compliance with one of the core
principles of hashing being the avalanche effect. The avalanche effect is a principle for secure
hashing that states that small changes to a message’s input should be representative of a massive
alteration of output (Upadhyay et al., 2022), similar to an avalanche escalating in variance as it
rolls down a hill. Length extension attacks can then be seen to exploit this principle as the
appending of a message will still compute up to the hash of the initial message before passing
that hash to continuing steps for correctly hashing the remaining message elements (Cortez,
2020). This appending of messages in length extension attacks can then be seen to result from
the way that messages are padded and processed within vulnerable hashing algorithms (Al-Odat,
Khan, & Al-Qtiemat, 2022). The relationship between length extension attacks and the padding
of blocks is central to understanding the vulnerability and as such has led to this attack also being
referred to as a padding attack (Upadhyay et al., 2022). For example, to create a MAC value a
message is created and passed to a hashing algorithm where padding is added to create blocks of
the correct size (Basta, 2018). These blocks are then processed one by one up until the end block.

This means that the processing of blocks through the end of the message would be identical to

the processing of blocks up until the start of the appended message in an altered form (Al-Odat,
Khan, & Al-Qtiemat, 2022). A malicious attacker must then simply process the blocks of
appended data with the given information to successfully produce a hashed value of the new
message.

While length extension attacks pose a serious threat to MAC value integrity, several
implementations exist to combat this risk and ensure that hashed values can be used to
authenticate that a message has not been altered. One of the most notable implementations to
accomplish this task can be seen through the switch from MAC to HMAC implementations
(Chawla, 2021). HMAC:s function by taking the original message as well as the secret key used
in encryption and hash them together to get the new HMAC value (Upadhyay et al., 2022). The
primary difference between HMACs and signatures can then be seen in the fact that HMACs use
private key encryption while signatures use public (Chawla, 2021). HMACs provide added
security over their MAC counterparts by hashing the key and the message separately, resulting in
a message that cannot be appended to without knowing the secret key (Chawla, 2021). The key is
used in this process to initially append a series of bits to the front of the message and as the
blocks are processed in order, the appending of this key will affect the hash of the entire
message. This allows the hash to better comply with the avalanche effect principle and protects
data from length extension attacks where the attacker does not know the secret key. Further, as
long as these secret keys remain uncompromised, the hashed value can also seek to provide non-
repudiation as only validated users should have access to the shared private key (Chawla, 2021).
From this, the vast improvement of HMAC over MAC can be observed and a security
professional can be better equipped to implement HMAC hashes for increased data security and

message integrity.

In this lab, length extension attacks are explored to give the user an understanding of the
importance of securing machine codes. The lack of security regarding these codes could result in
man-in-the-middle attacks being performed where a malicious actor can append contents to the
end of a message while maintaining a valid hashed code (Upadhyay et al., 2022). In order to
explore these attacks, the core pieces of information needed to perform the attack are examined
within the context of an attack allowing the user to gain an overview of how a length extension
attack is performed. This begins by first providing an examination of calculating a MAC from an
input message. After this, the next element being message padding is explored to understand the
role played by block buffering in the SHA256 algorithm. With this knowledge, a mock length
extension attack can be performed to append data to the end of the message passed to the server.
This lab uses the example of appending codes sent to the server to get the server to perform
functionality unintended by the original sender. This highlights the dangers associated with
length extension attacks and as such points to the importance for a security professional to cover
associated vulnerabilities. This then leads to the final portion of the lab where the mitigation
strategy of implementing HMAC over MAC is examined and the benefits explored. Using
HMAC involves including a private key to encryption to better secure the hashed values and as
such increases the security of the message and mitigates the ability for length extension to occur
(Chawla, 2021). Mitigation of risk and the covering of vulnerabilities are primary goals for
security professionals, and through examining attack vectors such as length extension attacks, a
security professional can be better equipped to implement security using hashed values within a

system.

Lab Procedure:

The first task of this lab involved sending requests to the server and examining the effects
of sending requests with valid and invalid MAC values. The server uses the MAC value to
validate message integrity and as such, a message with an incorrect or missing MAC value will
result in a failure of command execution. To generate a valid MAC value, the file of possible
user 1Ds and key pairs must be examined (Screenshot 1) and this data used to update the fields of
the message to be sent. This code could then be sent to the SHA256 hashing algorithm
(Screenshot 2) and this hashed value could then be used as the MAC value for the message.
Sending this message to the server will then result in a verification of message integrity and the
contents of the server will be displayed (Screenshot 3). This same procedure can then be
performed for the download command by first generating a MAC value for the command
(Screenshot 4) and then sending the command to the server to download the intended file
(Screenshot 5).

The next lab task then instructed the user to explore the implementation of block padding
within the SHA256 algorithm and the impact that this padding plays on length extension attacks.
To begin this task, a new message value was generated (Screenshot 6) which served as the basis
for calculating the message padding. In SHA 256, the messages are processed in blocks of 64
bytes in size (Al-Odat, Khan, & Al-Qtiemat, 2022) with the original message only taking 46
bytes of that space. This means that 17 bytes of padding will be added to the message. Further,
the length of the initial method also determines the final eight bytes of the padding which will
read “\x00 \x00 \x00 \x00 \x00 \x00 \x01 \x70” representative of the original message’s size. The
remaining padded bytes were then filled with the hexadecimal value of “\x00”. Appending the

padding to the message then results in the final hexadecimal representation of the padded value

(Screenshot 7). However, each hexadecimal prefix of “\x” must be replaced with the percent
symbol “%” to ensure that it can be passed to the browser with commands. The padding is an
essential aspect of length extension attacks as the padding value records the length of the
message it pads (Upadhyay et al., 2022). To accomplish a length extension attack, a new padding
value must be generated and appended to the message with the updated message length included.
This highlights the importance for a security professional to understand the role of padding in
MAC values and gives insight into the mitigation of length extension attacks.

After this, the lab then directed the user toward the simulation of a length extension
attack to gain insight into how these attacks are performed. To accomplish this, a new test
message was generated and hashed with the SHA256 algorithm to create a MAC value for the
initial message as would be sent from an initial sender (Screenshot 8). A program could then be
used to append additional data onto this message by processing each block present in the original
message and then running the update function to add on the new blocks present from the
additional data (Screenshot 9). When compiling this code, several warnings of the deprecation of
the SHA256 functions will be presented as these functions have been deprecated due to security
concerns (Screenshot 10) further highlighting the importance of exploring attacks such as the
length extension attack on SHA256. Executing this code then returns the updated MAC value for
the new extended message (Screenshot 11). With a simple example performed, another extension
attack could then be performed to be sent to the server. To begin this, the original server message
could be created, and the MAC value generated for that message (Screenshot 12). The program
could then be updated, including the updated values for the message blocks and the addition of
the download command added as the extended message (Screenshot 13). Again, this code could

be compiled (Screenshot 14) and executed to generate the new MAC value from the extended

message (Screenshot 15). Passing the extended message with the new MAC value should then
allow the download command to be executed on the server successfully performing a length
extension attack. In my attempt at this lab step, | was unable to get the download command to

execute correctly (Screenshot 16), but the new MAC value was generated and appended to the

message sent to the server to accomplish the download.

The final lab task then challenged the user with exploring the mitigation provided from
witching the MAC hashed values to HMAC values. The first step of this task involved accessing
the verify_mac function for the server which is responsible for verifying the MAC value passed
to the server (Screenshot 17). The code for this function was then changed to its HMAC
counterpart (Screenshot 18) before rebuilding the server from the updated files (Screenshot 19).
As an example, this code can be executed to produce a hash value and prove that the function has
been implemented correctly (Screenshot 20). A new program could then be created to generate
HMAC values (Screenshot 21) and the steps of task one repeated to prove the increased security
provided by HMAC values. Rehashing the value according to the steps of task one (Screenshot
22) and then passing the value to the server will then show that access to the server is denied
(Screenshot 23) highlighting the increased security of HMAC values. HMAC values provide
additional security over MAC values as HMAC encryption includes a private key value in the
encryption process (Chawla, 2021). This means that a malicious actor without access to the
private key would then be unable to perform an extension attack while still generating the correct
hashed value. This is a major improvement in security over the sole use of MAC values
highlighting the importance for a security professional to understand HMAC implementations

for the mitigation of length extension attacks. Length extension attacks pose a major threat to the

integrity of data and a security professional should take great care in implementations using

MAC values to ensure that integrity is maintained in light of potential attacks.

10

References
Al-Odat, Z. A., Khan, S. U., & Al-Qtiemat, E. (2022). A modified secure hash design to
circumvent collision and length extension attacks. Journal of Information Security and

Applications, 71, 103376. https://doi.org/10.1016/].jisa.2022.103376

Basta, A. (2018). Oriyano, cryptography: Infosec pro guide. McGraw-Hill Education.

https://bookshelf.vitalsource.com/reader/books/9781307297003/pageid/14

Chawla, A. (August 31, 2021). What is HMAC? (Hash based message authentication code)?.

Geeks for Geeks. https://www.geeksforgeeks.org/what-is-hmachash-based-message-

authentication-code/

Cortez, D. M. A,, Sison, A. M., & Medina, R. P. (April, 2020). Cryptographic randomness test of
the modified hashing function of SHA256 to address length extension attack.
Proceedings of the 2020 8th International Conference on Communications and

Broadband Networking (pp. 24-28). https://dl.acm.org/doi/abs/10.1145/3390525.3390540

Python. (n.d.). hmac- Keyed-hashing for message authentication. Python.

https://docs.python.org/3/library/hmac.html

Upadhyay, D., Gaikwad, N., Zaman, M., & Sampalli, S. (2022). Investigating the avalanche
effect of various cryptographically secure hash functions and hash-based
applications. IEEE Access, 10, 112472-

112486. https://doi.org/10.1109/ACCESS.2022.3215778

https://doi.org/10.1016/j.jisa.2022.103376
https://bookshelf.vitalsource.com/reader/books/9781307297003/pageid/14
https://www.geeksforgeeks.org/what-is-hmachash-based-message-authentication-code/
https://www.geeksforgeeks.org/what-is-hmachash-based-message-authentication-code/
https://dl.acm.org/doi/abs/10.1145/3390525.3390540
https://docs.python.org/3/library/hmac.html
https://doi.org/10.1109/ACCESS.2022.3215778

Screenshotl: (Return to text)

Screenshots: Task 1

Open

11001:123456
2 1002:983abe
3 1603:793zye
4 1004:882xc
5 1005:xclujk

Screenshot2: (Return to text)

key.txt

Plain Tex

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

5 :myname=HaydenEubanks&uld=100181stcmd=1" | sha2s6sum

Tab width

Lns, Col 12

11

Screenshot3: (Return to text)

@ NewTab % Length Extension Lab x| Length Extension Lab X | + v - 8 x

(e C Qo8 seedlab-hashlen.com, 3 % w @

Hash Length Extension Attack Lab
Yes, your MAC is valid

List Directory

1. secret.txt
2. key.txt

Screenshot4: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2 parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

: $ echo -n "123456:myname=HaydenEubanksauid=1001&1stcmd=18download=secret.txt"” | sha2s
d879b242ef20b7f5e5d09f620c658b9d51ebaf48d4707ffodaas6adac1067127
: S

Screenshot5: (Return to text)

o

13

Yes, your MAC is valid
List Directory

secret.txt
key.txt

File Content
TOP SECRET.

DO NOT DISCLOSE.

@ Length Extension Lab ® |+
« [} O 8 www.seedlab-hashlen.com/?myname=HaydenEubanks&uid=1001&lstemd=1&download=secret.txta&mac=d879b242ef20b7f5

Hash Length Extension Attack Lab

Screenshots: Task 2

Screenshot6: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

parallelsg 4 2-04-deskto a 2 parallels@ubuntu-linux-22-04-desktop.

HaydenEubanks&uid=1881&1stcnd=1f]

Screenshot7: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2 parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

GNU nano 6.2
//Message Equals 46 bytes 368 bits \x170
123456:myname=HaydenEubanks&uid=1001&1stcmd=1

//Padding Byte 1 = 47 bytes
\x86

//64 - 47 = 17 bytes (9 bytes of \x6@ before last 8)

\x00
\x00 \x00 \x00 \x00 \x60 \x60 \x60 \x00

//Last 8 bytes
\Xx00 \x00 \x00 \x00 \x00 \x00 \x01 \x70

//Total Padded message
123456:myname=HaydenEubanks&uid=1001&1stcmd=1

\x00 \x00 \x00 \x00 \x00 \x60 \x00 \x00
\X00 \x00 \x00 \x00 \x00 \x00 \x01 \x70

//For URL
123456:myname=HaydenEubanks&uid=1001&lstcmd=1
%80

X00

X00 X00 %00 %00 %00 X00 %00 %00

%00 %00 %00 %00 %00 %00 %01 %70

Help g Write out Bl Where Is g cut Execute Location Undo Set Mark To Bracket
W Exit al Read File Replace Wl Paste Justify Go To Line Redo Copy where Was

Screenshots: Task 3

Screenshot8: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2 parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

: $ echo -n "This is a test message
673438001129a90c5b1637928bf38bf26e39e57¢6€9511005682048bedbef906
: $

Screenshot9: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

parall buntu-linu

length ext

x6f343800) ;
x1129a96¢)

htole32(0x5682048b
htole3 edbef 90

BE Help g Write Out B Where Is Bl Execute Location [undo
2 x) t Wi Read File |l Repl ste y To Line 3 Red

Screenshot10: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2 parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

H S echo -n “This is a test me
613438001129290c5b1637928bf38bf26e39e57c6e9511005682048bedbef906
H $ nano length_ext.c
$ gcc length_ext.c -o length_ext -lcrypto
length_ext. In function ‘main’:
length_ext.c:10:1: “SHA256_Init’ is deprecated: Since OpenSSL 3.0 [
10 | (&c);
|
In file included from length_ext.c:4:
Jusr/include/openssl/sha.h:73:27: declared here
73 | OSSL_DEPRECATEDIN_3_0 int (SHA256_CTX *c);

|
length_ext.c:12:4: ‘SHA256_Update’ s deprecated: Since OpenSSL 3.0 [
12 | (8¢, “*%, 1);
|
In file included from length_ext.c:4:
Jusr/include/openssl/sha.h:74:27: declared here
74 | OSSL_DEPRECATEDIN_3_@ int (SHA256_CTX *c,

|
length_ext.c:23:1: ‘SHA256_Update’ is deprecated: Since OpenSSL 3.0

23 | (&, "Extra messag
|
In file included from length_ext.c
Jusr/include/openssl/sha.h:74:27: declared here
74 | OSSL_DEPRECATEDIN_3_6 int (SHA256_CTX
|
length_ext.c:24:1: ‘SHA256_Final’ is deprecated: Since OpenSSL 3.0 [
24 | (buffer, &c);
|
In file included from length_ext.c:4:
Jusr/include/openssl/sha.h:76:27: declared here
76 | OSSL_DEPRECATEDIN_3_0 int (unsigned char *md, SHA2S
|
S

Screenshotl1: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

parallels@ubuntuinux-22-04-desktop: ~/Labsetup2 parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

: $./length_ext
eb71f88b08909fa9fe582¢994a61620b739045287104bf44fad9a2d0e28d6bf3
: s

Screenshot12: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2 parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

H $ echo -n "http://www.seedlab-hashlen.com/?myname=HaydenEubanksa&uid=100181stcmd=18mac=24e62a933ad5f93d4c3b76e5
767bc7b688b211447b0a31c92dccofef6bSadc”™ | sha2S56sum
€04d96fb14900bSe0chb7efSd8efS5cdac13954dfob8Se6fbofb711359ef9b5355

s

Screenshot13: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

parallels@ubuntu-linux-22:

*argv[])

(0xef9b5355);

6_Final({buffer,

. Out gl Where t € Location u To Brack
& Read File &l Replace aste stify Go To Line e Copy Where Wa

Screenshot14: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2 parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

$ gcc length_ext.c -o length_ext -lcrypto

length_ext.c: In function ‘main’:
length_ext.c:10:1: “SHA256_Init’ is deprecated: Since OpenSSL 3.0 [

10 (COH
|
In file included from length_ext.c:4:
Jusr/include/openssl/sha.h:73:27: declared here
73 | OSSL_DEPRECATEDIN_3_6 int (SHA256_CTX *c);
|
length_ext.c:12:4: ‘SHA256_Update’ is deprecated: Since OpenSSL 3.0 [
12 | (ac, "**, 1)
|
In file included from length_ext.c
Jusr/include/openssl/sha.h:74:27: declared here
74 | OSSL_DEPRECATEDIN_3_© int (SHA256_CTX
|
length_ext.c:25: ‘SHA256_Update’ is deprecated: Since OpensSSL 3.0 [
25 | (&c, "&download=secret.txt", 20);
|
In file included from length_ext.c:4:
Jusr/include/openssl/sha.h:74:27: declared here
74 | OSSL_DEPRECATEDIN_3_6 int (SHA256_CTX

|
length_ext.c:26:1: ‘SHA256_Final’ is deprecated: Since OpensSSL 3.0 [
26 | (buffer, &c);
|
In file included from length_ext.c:4:
Jusr/include/openssl/sha.h:76:2 declared here
76 | OSSL_DEPRECATEDIN_3_6 int (unsigned char *md, SHA256_CTX *c);

|
s

Screenshot15: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2 parallels@ubuntu-linux-22-04-desktop: ~,

: $./length_ext
Sbfbledb18c0d1000ae4b3ce2a23022102d830b 27 fcO0d58e091156ec616d703
: $

19

Screenshot16: (Return to text)
A

@ | Length Extension Lab x| 4+
« C O & www.seedlab-hashlen.com/zmyname=HaydenEubanks&uid=10018lstemd=1&download=secret.txtamac=5bfb1e4b18c0d 100

Hash Length Extension Attack Lab
Sorry, your MAC is not valid

aQ
g
n

Screenshots: Task 4

Screenshotl7: (Return to text)

Cpen ~ § 9 up2/image_flask/app/www = 2 9
1 from flask import (

2 Blueprint, flash, g, redirect, render_template, request, url_for, current_app as app
3)

4 from werkzeug.exceptions import abort

S import os

6 tmport hashlib

7 import urllib.parse

8 import hmac

9
10 bp = Blueprint(' lab', _ name_)
1
12 INVALID_KEY = 1
13
14
1S @bp.route('/')
16 def main():
17 # set debug to 1 and show the verbose output
18 uld = request.args.get('uid’, default=lone)
19 if not uid:
20 return not found. Ab: ing.
21 app.logger. lnfo(eceived from user %s', uld)
22
23 cnd = get_command()
24 app.logger.info(request.args. get(temd ').encode(' utf-8', rr ape'))
25 download = request.args. get(i, default='", [ype:str)
26 mac = request.args.get(nac defaults , type=str)
27 my_name = request.args.get(ynane', default='', type=str)
28
29 if not my_name
30 return 'Please include the "myname® argument in the request
3
32 if not cmd or not mac:
33 return ‘Pl]] a comm and it
34
35 key = find_key(uid)
36 if key == INVALID KEV
37 return 'No k L ise uid
38 valid = verify_t na:(key, ny_nane, u\d, cnd download, mac)
39 if not valid:
40 return render_template(index. himl', valld=ralse)
41
42
43 1':
a4 flles = ist_files()
45 content =
46 Lf download:
47 content = read file(download)

Python2 v Tab Width:8 v Ln1,Col1 V. INS
Screenshot18: (Return to text)
Open v 7 lab.py - a x

image_flask/app/www

52 path = app.config[LAG ¢
53 if not os.path.exists(path)

54 app.logger.error('key file cannot be found')
55 return INVALID_KEY

56 f = open(path, 'r')

57 1ilnes = f.readlines()

58 app.logger .debug(path)

59 app.logger.debug(lines)

60 f.close()

+ app.config['KEY FILE NAME

61 for line in lines:

62 1ine = ne.strip()

63 app. logger.debug(line)

64 delimiter = app.config['KEY_FILE DELIMITER']

65 if delimiter not in line:

66 app.logger.error(inv d ine he nd]' + lne)
67 continue

68 _uld, _key = line.split(delimiter)

69 if _uid == uid:

70 return _key

71 return INVALID_KEY

72

73

74 def verify mac(key, my_name, uid, cmd, download, nac)

75 download_message = if not dwnloid else & vad=" + download
76 message =

77 Af my_name:

78 message = ‘my i .format(my_name)

79 message += 'uld m .format(uid) + cnd + download_message
80 payload = key + sage

81 p.logger.debug

ap ay
rnl mac = hmac. nc».(cyu.vroy(u\ encode(
msg=message.encode('utf-8',

utf-8')),
rrogateescape’')

84 digestmod=hashlib. ,hazsm \

85 app.logger.debug(' is [fornat(renl mac))
86 if mac == real_uc

87 return |

88 return False

89

90

91 def list_files():

92 return os.listdir(app.config['Lag HOME DIR'])
93

94

95 def read_file(file):

96 path = app.config['LAB_HOME DIR'] 4+ + flle
97 if not path_access :ontrol(path)

98 return ‘Acce

Python2 v TabWidth:8 v

Ln82, Col1

20

Screenshot19: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

$ docker-compose build
[+] Building 1.8s (8/8) FINISHED

Screenshot20: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

H $./mac_calc.py
€374b19c9bb9sfd 3f.>9m)7cd!1<Se29ddzame'lwaoialculioosuk 350466
: S

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

22

Screenshot21: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

~fLabsetup2 parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

Read 9 lines

& Help rite t Where @ Execute & i Undo
o Exit 3 - y Go To Line § Redo

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2 parallels@ubuntu-linux-22-04-desktop: ~/Labsetup2

: ./mac_Calc.py
024d19b4cb1cBed79e666b86d41442862b5652a025fbo15bbfe12edd6b69496d

Screenshot23: (Return to text)

@ | Length Extension Lab x | + o -

[C O & www.seedlab-hashlen.com/?myname=HaydenEubanks&uid=1001&lstcmd=1&mac=024d 19b4ch1cBed79e666b86d4F44 2862 w ® f =

Hash Length Extension Attack Lab

Sorry, your MAC is not valid

23

	References

