
 1

Hash Length Extension Attack Lab Report

Hayden Eubanks

School of Business, Liberty University

CSIS 463-B01

Dr. De Queiroz

September 30, 2023

 2

Hash Length Extension Lab Report

Introduction:

 One of the applications of hashing algorithms in modern cryptography can be seen in the

verification of message integrity (Upadhyay et al., 2022). This message integrity is often applied

through message authentication codes (MAC) which can be appended to the end of a message

and compared through hashing against the received message hash (Al-Odat, Khan, & Al-

Qtiemat, 2022). If the hashed values are the same, a high degree of certainty can be placed on the

fact that the message has not been altered. However, some hashing algorithms based on the

Merkle Damgård (MD) framework such as MD4, MD5, SHA1, SHA2, and SHA256 have been

discovered to be vulnerable to length extension attacks due to the way they perform block

padding (Al-Odat, Khan, & Al-Qtiemat, 2022). This vulnerability is a serious concern for

security professionals as it allows a malicious actor to append information to the end of a

message without knowing the original message's contents and then produce the correct hash

value for the new message (Cortez, 2020). The consequences of a length extension attack could

then result in the receiver believing that they can verify that a message has not been altered when

in fact the message has been intercepted and data appended to it (Upadhyay et al., 2022).

Understanding the implications of this vulnerability then highlights the importance of the risk of

length extension attacks to be mitigated, and one implementation to accomplish this is the use of

hash-based message authentication codes (HMACs) (Cortez, 2020). Exploring the dangers of

improper MAC usage and how they can be mitigated through HMACs can then allow a security

professional to understand the risks associated with length extension attacks as well as

implementations to mitigate these attacks in their work promoting message integrity.

 3

To examine the dangers posed by extension attacks, an understanding of how they are

performed must first be obtained. Length extension attacks of hashing algorithms are a form of

man-in-the-middle attack where a malicious actor intercepts a message and its hashed value and

then appends data to the end of the message before rehashing to a new and verifiable hashed

value (Upadhyay et al., 2022). To accomplish a length extension attack, a malicious actor would

need access to the original hashed value, the length of the initial message, and the hashing

algorithm used (Cortez, 2020). Notably, this list does not include the secret key used for

encryption highlighting a vulnerability of extreme concern. Further, the fact that this risk exists

in several notable hashing algorithms denotes a lack of compliance with one of the core

principles of hashing being the avalanche effect. The avalanche effect is a principle for secure

hashing that states that small changes to a message’s input should be representative of a massive

alteration of output (Upadhyay et al., 2022), similar to an avalanche escalating in variance as it

rolls down a hill. Length extension attacks can then be seen to exploit this principle as the

appending of a message will still compute up to the hash of the initial message before passing

that hash to continuing steps for correctly hashing the remaining message elements (Cortez,

2020). This appending of messages in length extension attacks can then be seen to result from

the way that messages are padded and processed within vulnerable hashing algorithms (Al-Odat,

Khan, & Al-Qtiemat, 2022). The relationship between length extension attacks and the padding

of blocks is central to understanding the vulnerability and as such has led to this attack also being

referred to as a padding attack (Upadhyay et al., 2022). For example, to create a MAC value a

message is created and passed to a hashing algorithm where padding is added to create blocks of

the correct size (Basta, 2018). These blocks are then processed one by one up until the end block.

This means that the processing of blocks through the end of the message would be identical to

 4

the processing of blocks up until the start of the appended message in an altered form (Al-Odat,

Khan, & Al-Qtiemat, 2022). A malicious attacker must then simply process the blocks of

appended data with the given information to successfully produce a hashed value of the new

message.

While length extension attacks pose a serious threat to MAC value integrity, several

implementations exist to combat this risk and ensure that hashed values can be used to

authenticate that a message has not been altered. One of the most notable implementations to

accomplish this task can be seen through the switch from MAC to HMAC implementations

(Chawla, 2021). HMACs function by taking the original message as well as the secret key used

in encryption and hash them together to get the new HMAC value (Upadhyay et al., 2022). The

primary difference between HMACs and signatures can then be seen in the fact that HMACs use

private key encryption while signatures use public (Chawla, 2021). HMACs provide added

security over their MAC counterparts by hashing the key and the message separately, resulting in

a message that cannot be appended to without knowing the secret key (Chawla, 2021). The key is

used in this process to initially append a series of bits to the front of the message and as the

blocks are processed in order, the appending of this key will affect the hash of the entire

message. This allows the hash to better comply with the avalanche effect principle and protects

data from length extension attacks where the attacker does not know the secret key. Further, as

long as these secret keys remain uncompromised, the hashed value can also seek to provide non-

repudiation as only validated users should have access to the shared private key (Chawla, 2021).

From this, the vast improvement of HMAC over MAC can be observed and a security

professional can be better equipped to implement HMAC hashes for increased data security and

message integrity.

 5

In this lab, length extension attacks are explored to give the user an understanding of the

importance of securing machine codes. The lack of security regarding these codes could result in

man-in-the-middle attacks being performed where a malicious actor can append contents to the

end of a message while maintaining a valid hashed code (Upadhyay et al., 2022). In order to

explore these attacks, the core pieces of information needed to perform the attack are examined

within the context of an attack allowing the user to gain an overview of how a length extension

attack is performed. This begins by first providing an examination of calculating a MAC from an

input message. After this, the next element being message padding is explored to understand the

role played by block buffering in the SHA256 algorithm. With this knowledge, a mock length

extension attack can be performed to append data to the end of the message passed to the server.

This lab uses the example of appending codes sent to the server to get the server to perform

functionality unintended by the original sender. This highlights the dangers associated with

length extension attacks and as such points to the importance for a security professional to cover

associated vulnerabilities. This then leads to the final portion of the lab where the mitigation

strategy of implementing HMAC over MAC is examined and the benefits explored. Using

HMAC involves including a private key to encryption to better secure the hashed values and as

such increases the security of the message and mitigates the ability for length extension to occur

(Chawla, 2021). Mitigation of risk and the covering of vulnerabilities are primary goals for

security professionals, and through examining attack vectors such as length extension attacks, a

security professional can be better equipped to implement security using hashed values within a

system.

 6

Lab Procedure:

The first task of this lab involved sending requests to the server and examining the effects

of sending requests with valid and invalid MAC values. The server uses the MAC value to

validate message integrity and as such, a message with an incorrect or missing MAC value will

result in a failure of command execution. To generate a valid MAC value, the file of possible

user IDs and key pairs must be examined (Screenshot 1) and this data used to update the fields of

the message to be sent. This code could then be sent to the SHA256 hashing algorithm

(Screenshot 2) and this hashed value could then be used as the MAC value for the message.

Sending this message to the server will then result in a verification of message integrity and the

contents of the server will be displayed (Screenshot 3). This same procedure can then be

performed for the download command by first generating a MAC value for the command

(Screenshot 4) and then sending the command to the server to download the intended file

(Screenshot 5).

 The next lab task then instructed the user to explore the implementation of block padding

within the SHA256 algorithm and the impact that this padding plays on length extension attacks.

To begin this task, a new message value was generated (Screenshot 6) which served as the basis

for calculating the message padding. In SHA 256, the messages are processed in blocks of 64

bytes in size (Al-Odat, Khan, & Al-Qtiemat, 2022) with the original message only taking 46

bytes of that space. This means that 17 bytes of padding will be added to the message. Further,

the length of the initial method also determines the final eight bytes of the padding which will

read “\x00 \x00 \x00 \x00 \x00 \x00 \x01 \x70” representative of the original message’s size. The

remaining padded bytes were then filled with the hexadecimal value of “\x00”. Appending the

padding to the message then results in the final hexadecimal representation of the padded value

 7

(Screenshot 7). However, each hexadecimal prefix of “\x” must be replaced with the percent

symbol “%” to ensure that it can be passed to the browser with commands. The padding is an

essential aspect of length extension attacks as the padding value records the length of the

message it pads (Upadhyay et al., 2022). To accomplish a length extension attack, a new padding

value must be generated and appended to the message with the updated message length included.

This highlights the importance for a security professional to understand the role of padding in

MAC values and gives insight into the mitigation of length extension attacks.

 After this, the lab then directed the user toward the simulation of a length extension

attack to gain insight into how these attacks are performed. To accomplish this, a new test

message was generated and hashed with the SHA256 algorithm to create a MAC value for the

initial message as would be sent from an initial sender (Screenshot 8). A program could then be

used to append additional data onto this message by processing each block present in the original

message and then running the update function to add on the new blocks present from the

additional data (Screenshot 9). When compiling this code, several warnings of the deprecation of

the SHA256 functions will be presented as these functions have been deprecated due to security

concerns (Screenshot 10) further highlighting the importance of exploring attacks such as the

length extension attack on SHA256. Executing this code then returns the updated MAC value for

the new extended message (Screenshot 11). With a simple example performed, another extension

attack could then be performed to be sent to the server. To begin this, the original server message

could be created, and the MAC value generated for that message (Screenshot 12). The program

could then be updated, including the updated values for the message blocks and the addition of

the download command added as the extended message (Screenshot 13). Again, this code could

be compiled (Screenshot 14) and executed to generate the new MAC value from the extended

 8

message (Screenshot 15). Passing the extended message with the new MAC value should then

allow the download command to be executed on the server successfully performing a length

extension attack. In my attempt at this lab step, I was unable to get the download command to

execute correctly (Screenshot 16), but the new MAC value was generated and appended to the

message sent to the server to accomplish the download.

 The final lab task then challenged the user with exploring the mitigation provided from

witching the MAC hashed values to HMAC values. The first step of this task involved accessing

the verify_mac function for the server which is responsible for verifying the MAC value passed

to the server (Screenshot 17). The code for this function was then changed to its HMAC

counterpart (Screenshot 18) before rebuilding the server from the updated files (Screenshot 19).

As an example, this code can be executed to produce a hash value and prove that the function has

been implemented correctly (Screenshot 20). A new program could then be created to generate

HMAC values (Screenshot 21) and the steps of task one repeated to prove the increased security

provided by HMAC values. Rehashing the value according to the steps of task one (Screenshot

22) and then passing the value to the server will then show that access to the server is denied

(Screenshot 23) highlighting the increased security of HMAC values. HMAC values provide

additional security over MAC values as HMAC encryption includes a private key value in the

encryption process (Chawla, 2021). This means that a malicious actor without access to the

private key would then be unable to perform an extension attack while still generating the correct

hashed value. This is a major improvement in security over the sole use of MAC values

highlighting the importance for a security professional to understand HMAC implementations

for the mitigation of length extension attacks. Length extension attacks pose a major threat to the

 9

integrity of data and a security professional should take great care in implementations using

MAC values to ensure that integrity is maintained in light of potential attacks.

 10

References

Al-Odat, Z. A., Khan, S. U., & Al-Qtiemat, E. (2022). A modified secure hash design to

circumvent collision and length extension attacks. Journal of Information Security and

Applications, 71, 103376. https://doi.org/10.1016/j.jisa.2022.103376

Basta, A. (2018). Oriyano, cryptography: Infosec pro guide. McGraw-Hill Education.

https://bookshelf.vitalsource.com/reader/books/9781307297003/pageid/14

Chawla, A. (August 31, 2021). What is HMAC? (Hash based message authentication code)?.

Geeks for Geeks. https://www.geeksforgeeks.org/what-is-hmachash-based-message-

authentication-code/

Cortez, D. M. A., Sison, A. M., & Medina, R. P. (April, 2020). Cryptographic randomness test of

the modified hashing function of SHA256 to address length extension attack.

Proceedings of the 2020 8th International Conference on Communications and

Broadband Networking (pp. 24-28). https://dl.acm.org/doi/abs/10.1145/3390525.3390540

Python. (n.d.). hmac- Keyed-hashing for message authentication. Python.

https://docs.python.org/3/library/hmac.html

Upadhyay, D., Gaikwad, N., Zaman, M., & Sampalli, S. (2022). Investigating the avalanche

effect of various cryptographically secure hash functions and hash-based

applications. IEEE Access, 10, 112472-

112486. https://doi.org/10.1109/ACCESS.2022.3215778

https://doi.org/10.1016/j.jisa.2022.103376
https://bookshelf.vitalsource.com/reader/books/9781307297003/pageid/14
https://www.geeksforgeeks.org/what-is-hmachash-based-message-authentication-code/
https://www.geeksforgeeks.org/what-is-hmachash-based-message-authentication-code/
https://dl.acm.org/doi/abs/10.1145/3390525.3390540
https://docs.python.org/3/library/hmac.html
https://doi.org/10.1109/ACCESS.2022.3215778

 11

Screenshots: Task 1

Screenshot1: (Return to text)

Screenshot2: (Return to text)

 12

Screenshot3: (Return to text)

Screenshot4: (Return to text)

 13

Screenshot5: (Return to text)

 14

Screenshots: Task 2

Screenshot6: (Return to text)

Screenshot7: (Return to text)

 15

Screenshots: Task 3

Screenshot8: (Return to text)

Screenshot9: (Return to text)

 16

Screenshot10: (Return to text)

Screenshot11: (Return to text)

 17

Screenshot12: (Return to text)

Screenshot13: (Return to text)

 18

Screenshot14: (Return to text)

Screenshot15: (Return to text)

 19

Screenshot16: (Return to text)

 20

Screenshots: Task 4

Screenshot17: (Return to text)

Screenshot18: (Return to text)

 21

Screenshot19: (Return to text)

Screenshot20: (Return to text)

 22

Screenshot21: (Return to text)

Screenshot22: (Return to text)

 23

Screenshot23: (Return to text)

	References

